skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lorenz, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Existing stochastic rainfall generators (SRGs) are typically limited to relatively small domains due to spatial stationarity assumptions, hindering their usefulness for flood studies in large basins. This study proposes StormLab, an SRG that simulates precipitation events at 6‐hr and 0.03° resolution in the Mississippi River Basin (MRB). The model focuses on winter and spring storms caused by water vapor transport from the Gulf of Mexico—the key flood‐generating storm type in the basin. The model generates anisotropic spatiotemporal noise fields that replicate local precipitation structures from observed data. The noise is transformed into precipitation through parametric distributions conditioned on large‐scale atmospheric fields from a climate model, reflecting spatial and temporal nonstationarity. StormLab can produce multiple realizations that reflect the uncertainty in fine‐scale precipitation arising from a specific large‐scale atmospheric environment. Model parameters were fitted monthly from December–May, based on storms identified from 1979 to 2021 ERA5 reanalysis data and Analysis of Record for Calibration (AORC) precipitation. StormLab then generated 1,000 synthetic years of precipitation events based on 10 CESM2 ensemble simulations. Empirical return levels of simulated annual maxima agree well with AORC data and show an overall increase in 1‐ to 500‐year events in the future period (2022–2050). To our knowledge, this is the first SRG simulating nonstationary, anisotropic high‐resolution precipitation over continental‐scale river basins, demonstrating the value of conditioning such stochastic models on large‐scale atmospheric variables. StormLab provides a wide range of extreme precipitation scenarios for design floods in the MRB and can be further extended to other large river basins. 
    more » « less
  2. Abstract Probabilistic forecasts of changes in soil moisture and an Evaporative Stress Index (ESI) on sub-seasonal time scales over the contiguous U.S. are developed. The forecasts use the current land surface conditions and numerical weather prediction forecasts from the Sub-seasonal to Seasonal (S2S) Prediction Project. Changes in soil moisture are quite predictable 8-14 days in advance with 50% or more of the variance explained over the majority of the contiguous U.S.; however, changes in ESI are significantly less predictable. A simple red noise model of predictability shows that the spatial variations in forecast skill are primarily a result of variations in the autocorrelation, or persistence, of the predicted variable, especially for the ESI. The difference in overall skill between soil moisture and ESI, on the other hand, is due to the greater soil moisture predictability by the numerical model forecasts. As the forecast lead time increases from 8-14 days to 15-28 days, however, the autocorrelation dominates the soil moisture and ESI differences as well. An analysis of modelled transpiration, and bare soil and canopy water evaporation contributions to total evaporation, suggests improvements to the ESI forecasts can be achieved by estimating the relative contributions of these components to the initial ESI state. The importance of probabilistic forecasts for reproducing the correct probability of anomaly intensification is also shown. 
    more » « less
  3. Abstract Recent years have seen growing appreciation that rapidly intensifying flash droughts are significant climate hazards with major economic and ecological impacts. This has motivated efforts to inventory, monitor, and forecast flash drought events. Here we consider the question of whether the term “flash drought” comprises multiple distinct classes of event, which would imply that understanding and forecasting flash droughts might require more than one framework. To do this, we first extend and evaluate a soil moisture volatility–based flash drought definition that we introduced in previous work and use it to inventory the onset dates and severity of flash droughts across the contiguous United States (CONUS) for the period 1979–2018. Using this inventory, we examine meteorological and land surface conditions associated with flash drought onset and recovery. These same meteorological and land surface conditions are then used to classify the flash droughts based on precursor conditions that may represent predictable drivers of the event. We find that distinct classes of flash drought can be diagnosed in the event inventory. Specifically, we describe three classes of flash drought: “dry and demanding” events for which antecedent evaporative demand is high and soil moisture is low, “evaporative” events with more modest antecedent evaporative demand and soil moisture anomalies, but positive antecedent evaporative anomalies, and “stealth” flash droughts, which are different from the other two classes in that precursor meteorological anomalies are modest relative to the other classes. The three classes exhibit somewhat different geographic and seasonal distributions. We conclude that soil moisture flash droughts are indeed a composite of distinct types of rapidly intensifying droughts, and that flash drought analyses and forecasts would benefit from approaches that recognize the existence of multiple phenomenological pathways. 
    more » « less